Radicial Morphism

CHF 42.60
Auf Lager
SKU
7D4B92A1RB3
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In algebraic geometry, a domain in mathematics, a morphism of schemes f:X Y is called radicial or universally injective, if, for every field K the induced map X(K) Y(K) is injective. (EGA I, (3.5.4)) It suffices to check this for K algebraically closed. This is equivalent to the following condition: f is injective on the topological spaces and for every point x in X, the extension of the residue fields k(f(x)) k(x) is radicial, i.e. purely inseparable. It is also equivalent to every base change of f being injective on the underlying topological spaces. (Thus the term universally injective.) Radicial morphisms are stable under composition, products and base change. If gf is radicial, so is f.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131254994
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • EAN 9786131254994
    • Format Fachbuch
    • Titel Radicial Morphism
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 100
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38