Random Compact Set

CHF 36.75
Auf Lager
SKU
PUFGKJ03E13
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, a random compact set is essentially a compact set-valued random variable. Random compact sets are useful in the study of attractors for random dynamical systems. Let (M,d) be a complete separable metric space. Let mathcal{K} denote the set of all compact subsets of M. The Hausdorff metric h on mathcal{K} is defined by h(K{1}, K{2}) := max left{ sup{a in K{1}} inf{b in K{2}} d(a, b), sup{b in K{2}} inf{a in K{1}} d(a, b) right}.(mathcal{K}, h) is also complete separable metric space. The corresponding open subsets generate a -algebra on mathcal{K}, the Borel sigma algebra mathcal{B}(mathcal{K}) of mathcal{K}.A random compact set is measurable function K from probability space (Omega, mathcal{F}, mathbb{P}) into (mathcal{K}, mathcal{B} (mathcal{K}) ).Put another way, a random compact set is a measurable function K : Omega to 2^{Omega} such that K( ) is almost surely compact and omega mapsto inf_{b in K(omega)} d(x, b) is a measurable function for every x in M.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131366208
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131366208
    • Titel Random Compact Set
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 72
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38