Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Random Walks on Disordered Media and their Scaling Limits
Details
In these lecture notes, we will analyze the behavior of random walk on disordered media by means of both probabilistic and analytic methods, and will study the scaling limits. We will focus on the discrete potential theory and how the theory is effectively used in the analysis of disordered media. The first few chapters of the notes can be used as an introduction to discrete potential theory.
Recently, there has been significant progress on the theory of random walk on disordered media such as fractals and random media. Random walk on a percolation cluster('the ant in the labyrinth')is one of the typical examples. In 1986, H. Kesten showed the anomalous behavior of a random walk on a percolation cluster at critical probability. Partly motivated by this work, analysis and diffusion processes on fractals have been developed since the late eighties. As a result, various new methods have been produced to estimate heat kernels on disordered media. These developments are summarized in the notes.
Starts from basics on discrete potential theory Contains many interesting examples of disordered media with anomalous heat conduction Anomalous behavior of random walk at criticality on random media Contains recent developments on random conductance models Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Weighted graphs and the associated Markov chains.- Heat kernel estimates General theory.- Heat kernel estimates using effective resistance.- Heat kernel estimates for random weighted graphs.- Alexander-Orbach conjecture holds when two-point functions behave nicely.- Further results for random walk on IIC.- Random conductance model.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319031514
- Sprache Englisch
- Auflage 2014
- Größe H235mm x B155mm x T9mm
- Jahr 2014
- EAN 9783319031514
- Format Kartonierter Einband
- ISBN 3319031511
- Veröffentlichung 04.02.2014
- Titel Random Walks on Disordered Media and their Scaling Limits
- Autor Takashi Kumagai
- Untertitel cole d't de Probabilits de Saint-Flour XL - 2010
- Gewicht 254g
- Herausgeber Springer International Publishing
- Anzahl Seiten 160
- Lesemotiv Verstehen
- Genre Mathematik