Random Walks on Reductive Groups

CHF 190.95
Auf Lager
SKU
IHF0F7N97PF
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

Provides a self-contained introduction to the products of independent identically distributed random matrices and to their Lyapunov exponents

Explains the relevance of the theory of reductive algebraic groups and the theory of bounded operators in Banach spaces to the study of random matrices

Contains a proof of the Local Limit Theorem for the norm of the products of independent identically distributed random matrices


Klappentext

The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.


Inhalt
Introduction.- Part I The Law of Large Numbers.- Stationary measures.- The Law of Large Numbers.- Linear random walks.- Finite index subsemigroups.- Part II Reductive groups.- Loxodromic elements.- The Jordan projection of semigroups.- Reductive groups and their representations.- Zariski dense subsemigroups.- Random walks on reductive groups.- Part III The Central Limit Theorem.- Transfer operators over contracting actions.- Limit laws for cocycles.- Limit laws for products of random matrices.- Regularity of the stationary measure.- Part IV The Local Limit Theorem.- The Spectrum of the complex transfer operator.- The Local limit theorem for cocycles.- The local limit theorem for products of random matrices.- Part V Appendix.- Convergence of sequences of random variables.- The essential spectrum of bounded operators.- Bibliographical comments.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319838052
    • Sprache Englisch
    • Auflage Softcover reprint of the original 1st edition 2016
    • Größe H235mm x B155mm x T18mm
    • Jahr 2018
    • EAN 9783319838052
    • Format Kartonierter Einband
    • ISBN 3319838059
    • Veröffentlichung 29.06.2018
    • Titel Random Walks on Reductive Groups
    • Autor Jean-François Quint , Yves Benoist
    • Untertitel Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern
    • Gewicht 572g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 336
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470