Real-time Speech and Music Classification by Large Audio Feature Space Extraction

CHF 202.00
Auf Lager
SKU
OK2TMU879BH
Stock 1 Verfügbar
Geliefert zwischen Mi., 31.12.2025 und Do., 01.01.2026

Details

This book reports on an outstanding thesis that has significantly advanced the state-of-the-art in the automated analysis and classification of speech and music. It defines several standard acoustic parameter sets and describes their implementation in a novel, open-source, audio analysis framework called openSMILE, which has been accepted and intensively used worldwide. The book offers extensive descriptions of key methods for the automatic classification of speech and music signals in real-life conditions and reports on the evaluation of the framework developed and the acoustic parameter sets that were selected. It is not only intended as a manual for openSMILE users, but also and primarily as a guide and source of inspiration for students and scientists involved in the design of speech and music analysis methods that can robustly handle real-life conditions.


Nominated as an outstanding thesis by Technische Universität München, Germany Describes the details and architecture of openSMILE - the number 1 open-source toolkit in speech emotion analytics and computational paralinguistics Reports on extensive automatic classification results for over ten public speech and music databases Includes supplementary material: sn.pub/extras

Inhalt
Abstract.- Introduction.- Acoustic Features and Modelling.- Standard Baseline Feature Sets.- Real-time Incremental Processing.- Real-life Robustness.- Evaluation.- Discussion and Outlook.- Appendix.- Mel-frequency Filterbank Parameters.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319272986
    • Lesemotiv Verstehen
    • Genre Electrical Engineering
    • Auflage 1st edition 2016
    • Sprache Englisch
    • Anzahl Seiten 336
    • Herausgeber Springer International Publishing
    • Größe H241mm x B160mm x T24mm
    • Jahr 2016
    • EAN 9783319272986
    • Format Fester Einband
    • ISBN 3319272985
    • Veröffentlichung 06.01.2016
    • Titel Real-time Speech and Music Classification by Large Audio Feature Space Extraction
    • Autor Florian Eyben
    • Untertitel Springer Theses
    • Gewicht 670g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470