Realizability

CHF 42.60
Auf Lager
SKU
QKQ684G8AV4
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Realizability is a part of proof theory which can be used to handle information about formulas instead of about the proofs of formulas. A natural number n is said to realize a statement in the language of arithmetic of natural numbers. Other logical and mathematical statements are also realizable, providing a method for interpreting well formed formulas without resorting to proofs for arriving at those formulas. Kleene introduced the concept of realizability in 1945 in the hopes of it being a faithful mirror of intuitionistic reasoning, but this conjecture was first disproved by Rose with his example of realizable propositional formulas that are unprovable in intuitionist calculus. Realizability appears to defy axiomatization due to its complexity, but it may be approachable through a higher-order Heyting arithmetic (HA). For HA3, a completeness property for the category of modest sets may be proved from the axioms which characterize the realizability of HA3.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131305207
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131305207
    • Format Fachbuch
    • Titel Realizability
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 92
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38