Realtime Data Mining

CHF 131.95
Auf Lager
SKU
OR5LMA535VJ
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data. The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's classic data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed.

This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.


Specifically addresses recommendation engines from a mathematically rigorous viewpoint Discusses a control-theoretic framework for recommendation engines Provides applications to a number of areas within engineering and computer science

Inhalt

1 Brave New Realtime World Introduction.- 2 Strange Recommendations? On The Weaknesses Of Current Recommendation Engines.- 3 Changing Not Just Analyzing Control Theory And Reinforcement Learning.- 4 Recommendations As A Game Reinforcement Learning For Recommendation Engines.- 5 How Engines Learn To Generate Recommendations Adaptive Learning Algorithms.- 6 Up The Down Staircase Hierarchical Reinforcement Learning.- 7 Breaking Dimensions Adaptive Scoring With Sparse Grids.- 8 Decomposition In Transition - Adaptive Matrix Factorization.- 9 Decomposition In Transition Ii - Adaptive Tensor Factorization.- 10 The Big Picture Towards A Synthesis Of Rl And Adaptive Tensor Factorization.- 11 What Cannot Be Measured Cannot Be Controlled - Gauging Success With A/B Tests.- 12 Building A Recommendation Engine The Xelopes Library.- 13 Last Words Conclusion.- References.- Summary Of Notation.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Anzahl Seiten 340
    • Herausgeber Springer International Publishing
    • Gewicht 676g
    • Untertitel Self-Learning Techniques for Recommendation Engines
    • Autor Michael Thess , Alexander Paprotny
    • Titel Realtime Data Mining
    • Veröffentlichung 16.12.2013
    • ISBN 3319013203
    • Format Fester Einband
    • EAN 9783319013206
    • Jahr 2013
    • Größe H241mm x B160mm x T24mm
    • Lesemotiv Verstehen
    • Auflage 2013
    • GTIN 09783319013206

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38