Recent Advances in Algorithmic Differentiation

CHF 169.60
Auf Lager
SKU
MD2C0KJFQ01
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Di., 04.11.2025 und Mi., 05.11.2025

Details

The proceedings represent the state of knowledge in the area of algorithmic differentiation (AD). The 31 contributed papers presented at the AD2012 conference cover the application of AD to many areas in science and engineering as well as aspects of AD theory and its implementation in tools. For all papers the referees, selected from the program committee and the greater community, as well as the editors have emphasized accessibility of the presented ideas also to non-AD experts. In the AD tools arena new implementations are introduced covering, for example, Java and graphical modeling environments or join the set of existing tools for Fortran. New developments in AD algorithms target the efficiency of matrix-operation derivatives, detection and exploitation of sparsity, partial separability, the treatment of nonsmooth functions, and other high-level mathematical aspects of the numerical computations to be differentiated. Applications stem from the Earth sciences, nuclear engineering, fluid dynamics, and chemistry, to name just a few. In many cases the applications in a given area of science or engineering share characteristics that require specific approaches to enable AD capabilities or provide an opportunity for efficiency gains in the derivative computation. The description of these characteristics and of the techniques for successfully using AD should make the proceedings a valuable source of information for users of AD tools.

Easily accessible explanations that do not require a priori in-depth expertise Covers topics for users, researchers, and tool developers in the algorithmic differentiation area This collection is the most comprehensive and recent source of information on the subject since the AD2008 proceedings Includes supplementary material: sn.pub/extras

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642300226
    • Editor Shaun Forth, Paul Hovland, Andrea Walther, Jean Utke, Eric Phipps
    • Sprache Englisch
    • Auflage 2012
    • Größe H241mm x B160mm x T25mm
    • Jahr 2012
    • EAN 9783642300226
    • Format Fester Einband
    • ISBN 3642300227
    • Veröffentlichung 31.07.2012
    • Titel Recent Advances in Algorithmic Differentiation
    • Untertitel Lecture Notes in Computational Science and Engineering 87
    • Gewicht 735g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 380
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.