Recent Advances in Intelligent Image Search and Video Retrieval

CHF 268.25
Auf Lager
SKU
UKQ6JFA2TAU
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 29.10.2025 und Do., 30.10.2025

Details

This book initially reviews the major feature representation and extraction methods and effective learning and recognition approaches, which have broad applications in the context of intelligent image search and video retrieval. It subsequently presents novel methods, such as improved soft assignment coding, Inheritable Color Space (InCS) and the Generalized InCS framework, the sparse kernel manifold learner method, the efficient Support Vector Machine (eSVM), and the Scale-Invariant Feature Transform (SIFT) features in multiple color spaces. Lastly, the book presents clothing analysis for subject identification and retrieval, and performance evaluation methods of video analytics for traffic monitoring.

Digital images and videos are proliferating at an amazing speed in the fields of science, engineering and technology, media and entertainment. With the huge accumulation of such data, keyword searches and manual annotation schemes may no longer be able to meet the practical demand for retrieving relevant content from images and videos, a challenge this book addresses.This book initially reviews the major feature representation and extraction methods and effective learning and recognition approaches, which have broad applications in the context of intelligent image search and video retrieval. It subsequently presents novel methods, such as improved soft assignment coding, Inheritable Color Space (InCS) and the Generalized InCS framework, the sparse kernel manifold learner method, the efficient Support Vector Machine (eSVM), and the Scale-Invariant Feature Transform (SIFT) features in multiple color spaces. Lastly, the book presents clothing analysis for subject identification and retrieval, and performance evaluation methods of video analytics for traffic monitoring.

Digital images and videos are proliferating at an amazing speed in the fields of science, engineering and technology, media and entertainment. With the huge accumulation of such data, keyword searches and manual annotation schemes may no longer be able to meet the practical demand for retrieving relevant content from images and videos, a challenge this book addresses.


Presents advanced pattern recognition and machine learning methods using sparse representation and Introduces innovative similarity Addresses both theory and practice Includes supplementary material: sn.pub/extras

Inhalt

Feature Representation and Extraction for Image Search and Video Retrieval.- Learning and Recognition Methods for Image Search and Video Retrieval.- Improved Soft Assignment Coding for Image Classication.- Inheritable Color Space (InCS) and Generalized InCS Framework with Applications to Kinship Verication.- Novel Sparse Kernel Manifold Learner for Image Classication Applications.- A New Efcient SVM (eSVM) with Applications to Accurate and Efcient Eye Search in Images.- SIFT Features in Multiple Color Spaces for Improved Image Classication.- Clothing Analysis for Subject Identication and Retrieval.- Performance Evaluation of Video Analytics for Trafc Incident Detection and Vehicle Counts Collection.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319848167
    • Auflage Softcover reprint of the original 1st edition 2017
    • Editor Chengjun Liu
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T15mm
    • Jahr 2018
    • EAN 9783319848167
    • Format Kartonierter Einband
    • ISBN 331984816X
    • Veröffentlichung 08.05.2018
    • Titel Recent Advances in Intelligent Image Search and Video Retrieval
    • Untertitel Intelligent Systems Reference Library 121
    • Gewicht 394g
    • Herausgeber Springer
    • Anzahl Seiten 256

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.