Reciprocal Recommender Systems

CHF 71.05
Auf Lager
SKU
4NOVNT6KU1D
Stock 1 Verfügbar
Geliefert zwischen Mo., 02.02.2026 und Di., 03.02.2026

Details

This book provides an introduction to reciprocal recommendation. It starts with theory, and then moves on to concrete examples of the most successful algorithms in the field. Researchers and developers with a little background in machine learning will find many of the algorithms are straightforward to implement, and code samples are included to help with this.

In addition to accessible algorithms, the book also examines some more cutting-edge research such as the recent interest in applying matching theory to reciprocal recommendation. These parts will be of interest both to developers who are looking to optimize their systems, and to researchers who might find avenues to further advance the field and develop new methods of recommending people to people.

By the end of this book, the reader will have a comprehensive understanding of the state of the art in reciprocal recommendation and will be equipped to design and implement their own systems.


Introduces reciprocal recommender systems, from theory to concrete examples Examines algorithms and related research in applying matching theory Enables researchers and advanced professionals to design and implement their own systems

Autorentext

James Neve is a machine learning researcher with Eureka Inc. in Tokyo, designing AI systems including Reciprocal Recommender Systems (RRSs) for online dating services. He has a PhD in Machine Learning from the University of Bristol, specialized in RRSs, and he has published multiple papers on reciprocal recommendation in competitive conferences such as ACM RecSys.


Inhalt

Preface.- 1. Introduction.- 2. Theoretical Background.- 3. Collaborative Filtering.- 4. Content-Based Filtering.- 5. Hybrid Filtering and Additional Approaches.- 6. Matching Theory.- 7. Ethical Concerns and Future Work.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031851025
    • Genre Information Technology
    • Lesemotiv Verstehen
    • Anzahl Seiten 120
    • Größe H235mm x B155mm x T7mm
    • Jahr 2025
    • EAN 9783031851025
    • Format Kartonierter Einband
    • ISBN 3031851021
    • Veröffentlichung 28.02.2025
    • Titel Reciprocal Recommender Systems
    • Autor James Neve
    • Untertitel SpringerBriefs in Computer Science
    • Gewicht 195g
    • Herausgeber Springer Nature Switzerland
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38