Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Recognizing unstructured EMR
Details
Computer systems and communication technologies made a strong and influential presence in the different fields of medicine. The cornerstone of a functional medical information system is the Electronic Health Records (EHR) management system. EHR implementation and adoption face different barriers that slow down its deployment in different organizations. This research focuses on resolving the most public barriers, which are data entry, unstructured clinical data modifying the physician work flow. This research proposed a solution, which use Text mining and Natural language processing techniques. This solution tested and verified in four real-world clinical organizations. The suggested solution proved correcteness and perciseness with 91.88%.
Autorentext
Fahad is an assistant professor of information systems department in Beni-Suef University, Egypt. He was born in sohag 1983, and finished his Ph.D. in information systems in 2015. Also he is a consultant in several governmental projects and companies.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786202511834
- Sprache Englisch
- Größe H220mm x B150mm x T9mm
- Jahr 2020
- EAN 9786202511834
- Format Kartonierter Einband
- ISBN 6202511834
- Veröffentlichung 15.03.2020
- Titel Recognizing unstructured EMR
- Autor Fahad Al Sheref , Sayed Abdulgaber , Hussien Bushnaq
- Untertitel Recognizing the Electronic Medical Record Data from Unstructured Medical Data Using Visual Text Mining Techniques
- Gewicht 209g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 128
- Genre Informatik