REDUCE OVERLAPPING IN MAMMOGRAPHY BY DEEP LEARNING CLASSIFICATION

CHF 47.55
Auf Lager
SKU
ELEQ5MBL14Q
Stock 1 Verfügbar
Geliefert zwischen Do., 20.11.2025 und Fr., 21.11.2025

Details

Breast cancer is the leading cause of cancer death among women. Screening mammography is the only method currently available for the reliable detection of early and potentially curable breast cancer. Research indicates that the mortality rate could decrease by 30% if women age 50 and older have regular mammograms. In this dissertation, we propose a new full-field mammogram analysis method focusing on characterizing and identifying normal mammograms. A mammogram is analyzed region by region and is classified as normal or abnormal. The methods for extracting features are presented in this thesis which are used to distinguish normal and abnormal regions of a mammogram. In this book, convolution neural network classifier is used to boost the classification performance. This classifier performs better than previous classifiers. In that it shows more accuracy than the others classifiers, the misclassification rate of normal mammograms as abnormal.This approach performs good on overlapping problem.

Autorentext

Working in the field of Image Processing, my major research area includes disease detection through various machine learning models.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786204208077
    • Genre Electrical Engineering
    • Sprache Englisch
    • Anzahl Seiten 72
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T5mm
    • Jahr 2021
    • EAN 9786204208077
    • Format Kartonierter Einband
    • ISBN 6204208071
    • Veröffentlichung 30.09.2021
    • Titel REDUCE OVERLAPPING IN MAMMOGRAPHY BY DEEP LEARNING CLASSIFICATION
    • Autor Bobbinpreet Kaur , Ketan Sharma
    • Untertitel USING CONVOLUTION NEURAL NETWORK
    • Gewicht 125g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470