Regression and Classification Approaches on Micoarray Data

CHF 62.35
Auf Lager
SKU
S2U35R54FCD
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

In the context of microarray data, a common characteristic is that the number of parameter is greater than the number of samples (n p). Because of this feature, many existing methods, derived for the usual "small p and large n" problem, either cannot be applied or may not perform well. For the purpose of classification of tumor types in real and simulated microarray data using regularized and classification approaches, we have studied three regression methods, namely Least Absolute Shrinkage and Selection Operator (LASSO), ridge regression, elastic net and four classification methods namely KNN, SVM, RDA and DLDA. In order to evaluation, we have used four readily available real microarray data sets which are Colon, Brain, SRBCT and Spira. The lasso imposes an L1 penalty and ridge regression imposes an L2 penalty; whereas, the elastic net is a balance between these two. Real data and simulation study show that the elastic net outperforms the lasso, although they both are derived from similar concept. Through the comparative study we have found that RDA performs the best for Brain, SRBCT and Spira cancer data and KNN performs better for Colon cancer data.

Autorentext

Md. Muzammel Hosen has completed his B.sc(Hon's) and M.S(Thesis) in Statistics from Shahjalal University of Science & Technology. In order to complete his M.S, he has accomplished his work under the supervision of Professor Dr. Mohammad Shahidul Islam. At present, he is trying to pursue a M.S degree in Statistics or Bioinformatics with scholarship.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659556401
    • Sprache Englisch
    • Größe H220mm x B150mm x T8mm
    • Jahr 2014
    • EAN 9783659556401
    • Format Kartonierter Einband
    • ISBN 3659556408
    • Veröffentlichung 12.06.2014
    • Titel Regression and Classification Approaches on Micoarray Data
    • Autor Md. Muzammel Hosen , Mohammad Shahidul Islam
    • Untertitel A Study of Regularized Version of GLM With Application in Synthetic and Real Microarray Data
    • Gewicht 185g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 112
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38