Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Regular Prime
CHF 42.60
Auf Lager
SKU
FGJNOMQM31D
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In number theory, a regular prime is a prime number p 2 that does not divide the class number of the p-th cyclotomic field. Ernst Kummer (Kummer 1850) showed that an equivalent criterion for regularity is that p does not divide the numerator of any of the Bernoulli numbers Bk for k = 2, 4, 6, , p 3. Kummer was able to prove that Fermat''s last theorem holds true for regular prime exponents. The first few regular primes are: 3, 5, 7, 11, 13, 17, 19, 23, 29, ... (sequence A007703 in OEIS). It has been conjectured that there are infinitely many regular primes. More precisely Siegel conjectured (1964) that e 1/2, or about 61%, of all prime numbers are regular, in the asymptotic sense of natural density. Neither conjecture has been proven as of 2010[update].
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130978235
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Größe H220mm x B220mm
- EAN 9786130978235
- Format Fachbuch
- Titel Regular Prime
- Herausgeber Betascript Publishing
- Anzahl Seiten 92
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung