Reinforcement Learning

CHF 493.00
Auf Lager
SKU
HHF18P175KC
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

This book presents up-to-date information on the main contemporary sub-fields of reinforcement learning, including partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations.

Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade.The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research.Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledgerepresentation in reinforcement learning settings.

Covers all important recent developments in reinforcement learning Very good introduction and explanation of the different emerging areas in Reinforcement Learning Includes a survey of previous papers written on the topic

Inhalt
Continous State and Action Spaces.- Relational and First-Order Knowledge Representation.- Hierarchical Approaches.- Predictive Approaches.- Multi-Agent Reinforcement Learning.- Partially Observable Markov Decision Processes (POMDPs).- Decentralized POMDPs (DEC-POMDPs).- Features and Function Approximation.- RL as Supervised Learning (or batch learning).- Bounds and complexity.- RL for Games.- RL in Robotics.- Policy Gradient Techniques.- Least Squares Value Iteration.- Models and Model Induction.- Model-based RL.- Transfer Learning in RL.- Using of and extracting Knowledge in RL.- Biological or Psychological Background.- Evolutionary Approaches.- Closing chapter, prospects, future issues.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642446856
    • Auflage 2012
    • Editor Martijn van Otterlo, Marco Wiering
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T36mm
    • Jahr 2014
    • EAN 9783642446856
    • Format Kartonierter Einband
    • ISBN 364244685X
    • Veröffentlichung 16.04.2014
    • Titel Reinforcement Learning
    • Untertitel State-of-the-Art
    • Gewicht 1001g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 672

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38