Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Remez Inequality
CHF 37.20
Auf Lager
SKU
HTB3EEG0TTA
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026
Details
In mathematics the Remez inequality, discovered by the Ukrainian mathematician E. J. Remez in 1936, gives a bound on the sup norms of certain polynomials, the bound being attained by the Chebyshev polynomials.In mathematics the Chebyshev polynomials, named after Pafnuty Chebyshev, are a sequence of orthogonal polynomials which are related to de Moivre's formula and which are easily defined recursively, like Fibonacci or Lucas numbers. One usually distinguishes between Chebyshev polynomials of the first kind which are denoted Tn and Chebyshev polynomials of the second kind which are denoted Un. The letter T is used because of the alternative transliterations of the name Chebyshev as Tchebycheff (French) or Tschebyscheff (German). The Chebyshev polynomials Tn or Un are polynomials of degree n and the sequence of Chebyshev polynomials of either kind composes a polynomial sequence.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131120688
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131120688
- Format Fachbuch
- Titel Remez Inequality
- Herausgeber Betascript Publishing
- Anzahl Seiten 68
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung