Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Representation Theory of the Lorentz Group
CHF 48.85
Auf Lager
SKU
MFJL3IQ0FH5
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026
Details
High Quality Content by WIKIPEDIA articles! According to general representation theory of Lie groups, one first looks for the representations of the complexification of the Lie algebra of the Lorentz group. A convenient basis for the Lie algebra of the Lorentz group is given by the three generators of rotations Jk= ijkLij and the three generators of boosts Ki=Lit where i, j, and k run over the three spatial coordinates and is the Levi-Civita symbol for a three dimensional spatial slice of Minkowski space. Note that the three generators of rotations transform like components of a pseudovector J and the three generators of boosts transform like components of a vector K under the adjoint action of the spatial rotation subgroup. This motivates the following construction: first complexify, and then change basis to the components of A = (J + i K)/2 and B = (J i K)/2. In this basis, one checks that the components of A and B satisfy separately the commutation relations of the Lie algebra sl2 and moreover that they commute with each other
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130347963
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T7mm
- Jahr 2010
- EAN 9786130347963
- Format Fachbuch
- ISBN 978-613-0-34796-3
- Titel Representation Theory of the Lorentz Group
- Untertitel Half-Integer, Spinor, Riemann Sphere, Hypergeometric Series, Riemann's Differential Equation, Spherical Harmonics, Emission Spectrum, Complexification
- Gewicht 203g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 124
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung