Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Resilience Management for a Sustainable Aging Society
Details
This book utilizes big data to undertake a cluster analysis of medical accidents. Highlighting shared worldwide accident patterns, it represents a first step toward reducing the incidence of accidents through kaizen innovation driven by information and communications technology. This initiative comes against a background where medical accidents are currently the third largest cause of death after heart attack and cancer, making accident prevention an urgent concern. With the objective of preventing these accidents, which negatively impact numerous different stakeholders, and based on interdisciplinary research, the book examines (1) the application of data mining to identify shared accident patterns; (2) proposals for system improvement and organizational innovation aimed at risk and resilience in crisis management; and (3) the use of a global platform to achieve sustainability in the Internet of Medicine (IoM).
Presents an ICT cluster analysis based on co-occurrence networks created using medical accident big data Offers kaizen innovation in line with medical safety based on medical- accident big data mining Introduces a medical accident preventability platform based on the Internet of Medicine (IoM)
Inhalt
ICT Resilience Management from Big-data.- Medical Accident Big-data in Japan.- 'Kaizen' for Medical Accident Preventability.- Medical Sustainability by Internet of Medicine.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811358043
- Sprache Englisch
- Titel Resilience Management for a Sustainable Aging Society
- Veröffentlichung 18.06.2019
- ISBN 9811358044
- Format Kartonierter Einband
- EAN 9789811358043
- Jahr 2019
- Größe H235mm x B155mm x T9mm
- Autor Shigeo Atsuji
- Untertitel Preventability of Medical Accidents Using Big Data
- Auflage 1st edition 2019
- Genre Management
- Lesemotiv Verstehen
- Anzahl Seiten 156
- Herausgeber Springer Nature Singapore
- Gewicht 248g