Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Ricci Flow and Three Dimensional Manifolds with Positive Curvature
Details
The study of the Ricci flow on differentiable manifolds in general has led to great progress in the study of manifolds of any dimension. In particular manifolds of low dimension can be looked at in great depth and these ideas have recently led to a resolution of the Poincare conjecture. The concept of the normailized and is introduced as well as the unnormalized flow. The curvature tensor in dimension three is studied as well as the evolution of the curvature. It is seen that maximum principles play a vital role in this work.
Autorentext
The author is currently a Professor in the Mathematics Department at the University of Texas in Edinburg, TX. His BSc degree from the University of Toronto and PhD degree from the University of Waterloo. His research interests include mathematical problems in quantum mechanics, quantum field theory, differential geometry.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 102g
- Untertitel DE
- Autor Paul Bracken
- Titel Ricci Flow and Three Dimensional Manifolds with Positive Curvature
- Veröffentlichung 09.08.2023
- ISBN 6206740021
- Format Kartonierter Einband
- EAN 9786206740025
- Jahr 2023
- Größe H220mm x B150mm x T4mm
- Anzahl Seiten 56
- GTIN 09786206740025