Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Riemannian Computing in Computer Vision
Details
This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).
Illustrates Riemannian computing theory on applications in computer vision, machine learning, and robotics Emphasis on algorithmic advances that will allow re-application in other contexts Written by leading researchers in computer vision and Riemannian computing, from universities and industry
Autorentext
Pavan Turaga is an Assistant Professor at Arizona State University Anuj Srivastava is a Professor at Florida State University
Inhalt
Welcome to Riemannian Computing in Computer Vision.- Recursive Computation of the Fr´echet Mean on Non-Positively Curved Riemannian Manifolds with Applications.- Kernels on Riemannian Manifolds.- Canonical Correlation Analysis on SPD(n) manifolds.- Probabilistic Geodesic Models for Regression and Dimensionality Reduction on Riemannian Manifolds.- Robust Estimation for Computer Vision using Grassmann Manifolds.- Motion Averaging in 3D Reconstruction Problems.- Lie-Theoretic Multi-Robot Localization.- CovarianceWeighted Procrustes Analysis.- Elastic Shape Analysis of Functions, Curves and Trajectories.- Why Use Sobolev Metrics on the Space of Curves.- Elastic Shape Analysis of Surfaces and Images.- Designing a Boosted Classifier on Riemannian Manifolds.- A General Least Squares Regression Framework on Matrix Manifolds for Computer Vision.- Domain Adaptation Using the Grassmann Manifold.- Coordinate Coding on the Riemannian Manifold of Symmetric Positive Definite Matrices for Image Classification.- Summarization and Search over Geometric Spaces.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319229560
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Auflage 1st edition 2016
- Editor Anuj Srivastava, Pavan K. Turaga
- Sprache Englisch
- Anzahl Seiten 400
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T27mm
- Jahr 2015
- EAN 9783319229560
- Format Fester Einband
- ISBN 3319229567
- Veröffentlichung 18.11.2015
- Titel Riemannian Computing in Computer Vision
- Gewicht 764g