Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Risk chain prediction metrics in software engineering
Details
The Software Industry faces dynamic changes in business environments and the advancements of technologies, information technology (IT) projects are facing lots of challenges, and there is a need of applying systematic approaches to deal with the risks to ensure the project s success. This presents two atypical risk chain prediction metrics for barometer coupling and accord in software systems. Our aboriginal metric, Ideal Coupling between Object classes (ICBO), is based on the acclaimed CBO coupling metric, while the added metric, Ideal Lack of Cohesion on Methods (ILCOM5), is based on the LCOM5 accord metric. One advantage of the proposed risk chain prediction metrics is that they can be computed in a simpler way as compared to some of the structural metrics. We empirically advised ICBO and ILCOM5 for admiration fault proneness of classes in a ample accessible antecedent arrangement and compared these metrics with a host of absolute structural and risk chain prediction metrics for the aforementioned task.
Autorentext
N.Rajasekhar reddy was received Bachelor's degree in Computer Science in S.V University and M.Tech degree from Satyabama University .He was working as Associate professor in the Dept. of ComputerScience and Engineering, MITS,Madanapalli,INDIA. He was published 10 international Journals and 4 national journals in Software Engineering.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 104
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 173g
- Autor Rajasekhar Reddy
- Titel Risk chain prediction metrics in software engineering
- Veröffentlichung 20.12.2012
- ISBN 3844356681
- Format Kartonierter Einband
- EAN 9783844356687
- Jahr 2012
- Größe H220mm x B150mm x T7mm
- GTIN 09783844356687