Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Robertson Seymour Theorem
CHF 42.80
Auf Lager
SKU
4ESVIO28J73
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In graph theory, the Robertson Seymour theorem (also called the graph minors theorem) states that, in any infinite class of finite, undirected, unlabelled graphs, there are two such that one is a contraction of a subgraph (i.e., a minor) of the other. Another way to state the theorem is that, for every family F of (unlabeled, finite) graphs, such that if a graph is in the family then all its minors also are, there is a finite class O of finite graphs such that a graph G is in F if and only if no member of O is a minor of G . The members of O are called the excluded minors (or forbidden minors, or minor-minimal obstructions) for the family F . The significance of the theorem is the finiteness of the set of excluded minors.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131258428
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Größe H220mm x B220mm
- EAN 9786131258428
- Format Fachbuch
- Titel Robertson Seymour Theorem
- Herausgeber Betascript Publishing
- Anzahl Seiten 80
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung