Robertson Seymour Theorem

CHF 42.80
Auf Lager
SKU
4ESVIO28J73
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In graph theory, the Robertson Seymour theorem (also called the graph minors theorem) states that, in any infinite class of finite, undirected, unlabelled graphs, there are two such that one is a contraction of a subgraph (i.e., a minor) of the other. Another way to state the theorem is that, for every family F of (unlabeled, finite) graphs, such that if a graph is in the family then all its minors also are, there is a finite class O of finite graphs such that a graph G is in F if and only if no member of O is a minor of G . The members of O are called the excluded minors (or forbidden minors, or minor-minimal obstructions) for the family F . The significance of the theorem is the finiteness of the set of excluded minors.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131258428
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131258428
    • Format Fachbuch
    • Titel Robertson Seymour Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 80
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38