Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Robust Optimization of Spline Models and Complex Regulatory Networks
Details
This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and in the contexts of banking, environmental protection, system biology and medicine. The book provides necessary background information on multi-model regulatory networks, optimization and regression. It presents the theory of and approaches to robust (conic) multivariate adaptive regression splines - R(C)MARS and robust (conic) generalized partial linear models R(C)GPLM under polyhedral uncertainty. Further, it introduces spline regression models for multi-model regulatory networks and interprets (C)MARS results based on different datasets for the implementation. It explains robust optimization in these models in terms of both the theory and methodology. In this context it studies R(C)MARS results with different uncertainty scenarios for a numerical example. Lastly, the book demonstrates the implementation of the method in a number of applications from the financial, energy, and environmental sectors, and provides an outlook on future research.
new methods of robust optimization to handle uncertainty and non-linearity in complex regulatory networks Provides guidance in the trade-off between accuracy and robustness Exemplifies the new methods in three detailed applications involving financial, energy and environmental systems
Autorentext
Aye Özmen has affiliation at Turkish Energy Foundation(TENVA)and Institute of Applied Mathematics of Middle East Technical University (METU), Ankara, Turkey. Her research is on OR, optimization, energy modelling, renewable energy systems, network modelling, regulatory networks, data mining. She received her Doctorate in Scientific Computing at Institute for Applied Mathematics at METU.
Inhalt
Introduction.- Mathematical Methods Used.- New Robust Analytic Tools.- Spline Regression Models for Complex Multi-Model Regulatory Networks.- Robust Optimization in Spline Regression Models for Regulatory Networks Under Polyhedral Uncertainty.- Real-World Application with Our Robust Tools.- Conclusion and Outlook.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319307992
- Lesemotiv Verstehen
- Genre Business Encyclopedias
- Auflage 1st edition 2016
- Sprache Englisch
- Anzahl Seiten 152
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T14mm
- Jahr 2016
- EAN 9783319307992
- Format Fester Einband
- ISBN 3319307991
- Veröffentlichung 23.05.2016
- Titel Robust Optimization of Spline Models and Complex Regulatory Networks
- Autor Ay e Özmen
- Untertitel Theory, Methods and Applications
- Gewicht 401g