Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Robust Partial Least Squares
Details
Partial least squares (PLS) has become an important statistical tool for modeling relations between sets of observed variables by means of latent variables especially for statistical problems dealing with high dimensional data sets. Despite of the fact that PLS handles multicollinearity problem, it fails to deal with data containing outliers since it is based on maximizing the sample covariance matrix between the response(s) and a set of explanatory variables, which is known to be sensitive to outliers. Existence of multicollinearity and outliers is no exception in real data sets, and it leads to a requirement of robust PLS methods in several application areas such as chemometrics. This book provides a detailed literature review on classical and robust PLS methods. The book introduces two new robust PLS methods that can be applied to regression (RoPLS) and classification (RoCPLS) problems. The content of the book should be especially useful for graduate students in statistics as a complementary material for classical multivariate data analysis courses and other researchers who can adopt the provided methodologies for real data analysis.
Autorentext
Asuman S. Turkmen: Ph.D. in Statistics, Auburn University, 2008. Assistant Professor at the Ohio State University, Newark. Nedret Billor: Ph.D. in Statistics, University of Sheffield, 1993. Associate Professor at Auburn University.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639294019
- Sprache Englisch
- Größe H6mm x B220mm x T150mm
- Jahr 2010
- EAN 9783639294019
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-29401-9
- Titel Robust Partial Least Squares
- Autor Asuman Turkmen , Nedret Billor
- Untertitel Regression and Classification
- Gewicht 171g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 116
- Genre Mathematik