Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Robust Subspace Estimation Using Low-Rank Optimization
Details
Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.
Provides a comprehensive summary of the state-of-the-art methods and applications of Low-Rank Optimization Reviews the latest approaches in a wide range of computer vision problems, including: Scene Reconstruction, Video Denoising, Activity Recognition, and Background Subtraction Involves a self-complete and detailed description of the methods and theories which makes it ideal for graduate students looking for a comprehensive resource in this area Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Background and Literature Review.- Seeing Through Water: Underwater Scene Reconstruction.- Simultaneous Turbulence Mitigation and Moving Object Detection.- Action Recognition by Motion Trajectory Decomposition.- Complex Event Recognition Using Constrained Rank Optimization.- Concluding Remarks.- Extended Derivations for Chapter 4.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319352480
- Herausgeber Springer, Berlin
- Anzahl Seiten 114
- Lesemotiv Verstehen
- Genre Software
- Auflage Softcover reprint of the original 1st ed. 2014
- Sprache Englisch
- Gewicht 1942g
- Untertitel Theory and Applications
- Autor Omar Oreifej , Mubarak Shah
- Größe H235mm x B155mm
- Jahr 2016
- EAN 9783319352480
- Format Kartonierter Einband
- ISBN 978-3-319-35248-0
- Veröffentlichung 23.08.2016
- Titel Robust Subspace Estimation Using Low-Rank Optimization