Rosenbrock Function

CHF 42.60
Auf Lager
SKU
VNMP3E941TS
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematical optimization, the Rosenbrock function is a non-convex function used as a performance test problem for optimization algorithms. It is also known as Rosenbrock''s valley or Rosenbrock''s banana function. The global minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial. To converge to the global minimum, however, is difficult. It is defined by f(x, y) = (1-x)^2 + 100(y-x^2)^2 .quad. It has a global minimum at (x,y) = (1,1) where f(x,y) = 0. A different coefficient of the second term is sometimes given, but this does not affect the position of the global minimum. Two variants are commonly encountered. One is the sum of N / 2 uncoupled 2D Rosenbrock problems, f(x1, x2, dots, xN) = sum{i=1}^{N/2} left[100(x{2i-1}^2 - x{2i})^2 + (x{2i-1} - 1)^2 right]. This variant is only defined for even N and has predictably simple solutions. A more involved variant is f(x) = sum{i=1}^{N-1} left[ (1-xi)^2+ 100 (x{i+1} - x_i^2 )^2 right] quad forall xinmathbb{R}^N.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131256035
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131256035
    • Format Fachbuch
    • Titel Rosenbrock Function
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 76
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38