Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Rotation Matrix
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In linear algebra, a rotation matrix is any matrix that acts as a rotation in Euclidean space. In three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in 2 or 3 dimensions, rotation matrices can be defined for n-dimensional space.
Klappentext
High Quality Content by WIKIPEDIA articles! In linear algebra, a rotation matrix is any matrix that acts as a rotation in Euclidean space. In three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in 2 or 3 dimensions, rotation matrices can be defined for n-dimensional space.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130316051
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H5mm x B220mm x T150mm
- Jahr 2009
- EAN 9786130316051
- Format Kartonierter Einband
- ISBN 978-613-0-31605-1
- Titel Rotation Matrix
- Untertitel Linear Algebra, Rotation (Mathematics), Euclidean Space, Plane (Geometry), Orthogonal Matrix, Column Vector, Isometry
- Gewicht 144g
- Herausgeber Betascript Publishers
- Anzahl Seiten 96
- Genre Mathematik