Rotation System

CHF 43.15
Auf Lager
SKU
MJ14N8CUH73
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In combinatorial mathematics, rotation systems encode embeddings of graphs onto orientable surfaces, by describing the circular ordering of a graph''s edges around each vertex. A more formal definition of a rotation system involves pairs of permutations; such a pair is sufficient to determine a multigraph, a surface, and a 2-cell embedding of the multigraph onto the surface. Every rotation scheme defines a unique 2-cell embedding of a connected multigraph on a closed oriented surface (up to orientation preserving topological equivalence). Conversely, any embedding of a connected multigraph G on an oriented closed surface defines a unique rotation system having G as its underlying multigraph. This fundamental equivalence between rotation systems and 2-cell-embeddings was first settled in a dual form by Heffter and extensively used by Ringel during the 1950s. Independently, Edmonds gave the primal form of the theorem and the details of his study have been popularized by Youngs. The generalization to the whole set of multigraphs was developed by Gross and Alpert.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131257360
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131257360
    • Format Fachbuch
    • Titel Rotation System
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 76
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38