Rotational Symmetry

CHF 49.20
Auf Lager
SKU
G3V94DJ87UH
Stock 1 Verfügbar
Geliefert zwischen Di., 23.09.2025 und Mi., 24.09.2025

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Generally speaking, an object with rotational symmetry is an object that looks the same after a certain amount of rotation. An object may have more than one rotational symmetry; for instance, if reflections or turning it over are not counted, the triskelion appearing on the Isle of Man''s flag has three rotational symmetries. More examples may be seen below. Formally, rotational symmetry is symmetry with respect to some or all rotations in m-dimensional Euclidean space. Rotations are direct isometries, i.e., isometries preserving orientation. Therefore a symmetry group of rotational symmetry is a subgroup of E+(m).

Klappentext

High Quality Content by WIKIPEDIA articles! Generally speaking, an object with rotational symmetry is an object that looks the same after a certain amount of rotation. An object may have more than one rotational symmetry; for instance, if reflections or turning it over are not counted, the triskelion appearing on the Isle of Man's flag has three rotational symmetries. More examples may be seen below. Formally, rotational symmetry is symmetry with respect to some or all rotations in m-dimensional Euclidean space. Rotations are direct isometries, i.e., isometries preserving orientation. Therefore a symmetry group of rotational symmetry is a subgroup of E+(m).

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130316778
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Genre Mathematik
    • Größe H220mm x B220mm
    • Jahr 2009
    • EAN 9786130316778
    • Format Kartonierter Einband
    • ISBN 978-613-0-31677-8
    • Titel Rotational Symmetry
    • Untertitel Rotation, Isle of Man, Symmetry Group, Symmetry Combinations, Frieze Group
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 116

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.