Rough Set

CHF 42.80
Auf Lager
SKU
N0FK7G774PI
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online.A rough set, first described by Zdzis aw I. Pawlak, is a formal approximation of a crisp set (i.e., conventional set) in terms of a pair of sets which give the lower and the upper approximation of the original set. In the standard version of rough set theory (Pawlak 1991), the lower- and upper-approximation sets are crisp sets, but in other variations, the approximating sets may be fuzzy sets. This section contains an explanation of the basic framework of rough set theory (proposed originally by Zdzis aw I. Pawlak), along with some of the key definitions. A review of this basic material can be found in sources such as Pawlak (1991), Ziarko (1998), Ziarko & Shan (1995), and many others.

Klappentext

A rough set, first described by Zdzislaw I. Pawlak, is a formal approximation of a crisp set (i.e., conventional set) in terms of a pair of sets which give the lower and the upper approximation of the original set. In the standard version of rough set theory (Pawlak 1991), the lower- and upper-approximation sets are crisp sets, but in other variations, the approximating sets may be fuzzy sets. This section contains an explanation of the basic framework of rough set theory (proposed originally by Zdzislaw I. Pawlak), along with some of the key definitions. A review of this basic material can be found in sources such as Pawlak (1991), Ziarko (1998), Ziarko & Shan (1995), and many others.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130310240
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B220mm
    • Jahr 2009
    • EAN 9786130310240
    • Format Fachbuch
    • ISBN 978-613-0-31024-0
    • Titel Rough Set
    • Untertitel Set (mathematics), Fuzzy Set, Attribute-value System, Equivalence Relation, Version Space, Model Selection, Association Rule Learning, Propositional Calculus, Logical Implication
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38