Routh Hurwitz Stability Criterion

CHF 43.20
Auf Lager
SKU
L2O0FPG35DG
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

High Quality Content by WIKIPEDIA articles! The Routh Hurwitz stability criterion is a necessary method to establish the stability of a single-input, single-output, linear time invariant control system. More generally, given a polynomial, some calculations using only the coefficients of that polynomial can lead to the conclusion that it is not stable. For the discrete case, see the Jury test equivalent. The criterion establishes a systematic way to show that the linearized equations of motion of a system have only stable solutions exp, that is where all p have negative real parts. It can be performed using either polynomial divisions or determinant calculus.

Klappentext

High Quality Content by WIKIPEDIA articles! The Routh-Hurwitz stability criterion is a necessary method to establish the stability of a single-input, single-output, linear time invariant control system. More generally, given a polynomial, some calculations using only the coefficients of that polynomial can lead to the conclusion that it is not stable. For the discrete case, see the Jury test equivalent. The criterion establishes a systematic way to show that the linearized equations of motion of a system have only stable solutions exp, that is where all p have negative real parts. It can be performed using either polynomial divisions or determinant calculus.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130319434
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Genre Physik & Astronomie
    • Größe H220mm x B150mm x T5mm
    • Jahr 2009
    • EAN 9786130319434
    • Format Kartonierter Einband
    • ISBN 978-613-0-31943-4
    • Titel Routh Hurwitz Stability Criterion
    • Untertitel Stable Polynomial, Linear Function, Time-Invariant System, Control System, Jury Stability Criterion, Euclidean Algorithm, Sturm's Theorem, Routh-Hurwitz Theorem
    • Gewicht 130g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 76

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470