Routh Hurwitz Theorem

CHF 43.15
Auf Lager
SKU
H7L50I0055K
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, Routh Hurwitz theorem gives a test to determine whether a given polynomial is Hurwitz-stable. It was proved in 1895 and named after Edward John Routh and Adolf Hurwitz. Let f(z) be a polynomial (with complex coefficients) of degree n with no roots on the imaginary line (i.e. the line Z=ic where i is the imaginary unit and c is a real number). Let us define P0(y) (a polynomial of degree n) and P1(y) (a nonzero polynomial of degree strictly less than n) by f(iy) = P0(y) + iP1(y), respectively the real and imaginary parts of f on the imaginary line. We can easily determine a stability criterion using this theorem as it is trivial that f(z) is Hurwitz-stable iff p q = n. We thus obtain conditions on the coefficients of f(z) by imposing w(+ ) = n and w( ) = 0.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131258466
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131258466
    • Format Fachbuch
    • Titel Routh Hurwitz Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 92
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38