Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Routh Hurwitz Theorem
CHF 43.15
Auf Lager
SKU
H7L50I0055K
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, Routh Hurwitz theorem gives a test to determine whether a given polynomial is Hurwitz-stable. It was proved in 1895 and named after Edward John Routh and Adolf Hurwitz. Let f(z) be a polynomial (with complex coefficients) of degree n with no roots on the imaginary line (i.e. the line Z=ic where i is the imaginary unit and c is a real number). Let us define P0(y) (a polynomial of degree n) and P1(y) (a nonzero polynomial of degree strictly less than n) by f(iy) = P0(y) + iP1(y), respectively the real and imaginary parts of f on the imaginary line. We can easily determine a stability criterion using this theorem as it is trivial that f(z) is Hurwitz-stable iff p q = n. We thus obtain conditions on the coefficients of f(z) by imposing w(+ ) = n and w( ) = 0.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131258466
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Größe H220mm x B220mm
- EAN 9786131258466
- Format Fachbuch
- Titel Routh Hurwitz Theorem
- Herausgeber Betascript Publishing
- Anzahl Seiten 92
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung