Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Rule Extraction from Support Vector Machines
Details
Support vector machines (SVMs) are one of the most active research areas in machine learning. SVMs have shown good performance in a number of applications, including text and image classification. However, the learning capability of SVMs comes at a cost an inherent inability to explain in a comprehensible form, the process by which a learning result was reached. Hence, the situation is similar to neural networks, where the apparent lack of an explanation capability has led to various approaches aiming at extracting symbolic rules from neural networks. For SVMs to gain a wider degree of acceptance in fields such as medical diagnosis and security sensitive areas, it is desirable to offer an explanation capability. User explanation is often a legal requirement, because it is necessary to explain how a decision was reached or why it was made. This book provides an overview of the field and introduces a number of different approaches to extracting rules from support vector machines developed by key researchers. In addition, successful applications are outlined and future research opportunities are discussed. The book is an important reference for researchers and graduate students, and since it provides an introduction to the topic, it will be important in the classroom as well. Because of the significance of both SVMs and user explanation, the book is of relevance to data mining practitioners and data analysts.
Introduces a number of different approaches to extracting rules from support vector machines developed by key researchers in the field Successful applications are outlined and future research opportunities are discussed Includes supplementary material: sn.pub/extras
Inhalt
Rule Extraction from Support Vector Machines: An Introduction.- Rule Extraction from Support Vector Machines: An Overview of Issues and Application in Credit Scoring.- Algorithms and Techniques.- Rule Extraction for Transfer Learning.- Rule Extraction from Linear Support Vector Machines via Mathematical Programming.- Rule Extraction Based on Support and Prototype Vectors.- SVMT-Rule: Association Rule Mining Over SVM Classification Trees.- Prototype Rules from SVM.- Applications.- Prediction of First-Day Returns of Initial Public Offering in the US Stock Market Using Rule Extraction from Support Vector Machines.- Accent in Speech Samples: Support Vector Machines for Classification and Rule Extraction.- Rule Extraction from SVM for Protein Structure Prediction.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783540753896
- Auflage 2008
- Editor Joachim Diederich
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H241mm x B160mm x T20mm
- Jahr 2008
- EAN 9783540753896
- Format Fester Einband
- ISBN 3540753893
- Veröffentlichung 04.01.2008
- Titel Rule Extraction from Support Vector Machines
- Untertitel Studies in Computational Intelligence 80
- Gewicht 582g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 276