Scalable Algorithms for Contact Problems

CHF 175.30
Auf Lager
SKU
OT5U1VL5R79
Stock 1 Verfügbar
Geliefert zwischen Mo., 02.02.2026 und Di., 03.02.2026

Details

This book presents a comprehensive and self-contained treatment of the authors' newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca's friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experiments. The final part includes extensions to contact shape optimization, plasticity, and HPC implementation. Graduate students and researchers in mechanical engineering, computational engineering, and applied mathematics, will find this book of great value and interest.

This is the first monograph on theoretically supported scalable algorithms for contact problems Exposition neatly presents efficient domain decomposition methods and a comprehensive description of parallel implementation Describes finite and boundary element domain decomposition methods in a unified form Features algorithms tested on real world problems Contains QPCQ and quadratic programming algorithms with rate of convergence Includes supplementary material: sn.pub/extras

Inhalt

  1. Contact Problems and their Solution.- Part I. Basic Concepts.- 2. Linear Algebra.- 3. Optimization.- 4. Analysis.- Part II. Optimal QP and QCQP Algorithms.- 5. Conjugate Gradients.- 6. Gradient Projection for Separable Convex Sets.- 7. MPGP for Separable QCQP.- 8. MPRGP for Bound Constrained QP.- 9. Solvers for Separable and Equality QP/QCQP Problems.- Part III. Scalable Algorithms for Contact Problems.- 10. TFETI for Scalar Problems.- 11. Frictionless Contact Problems.- 12. Contact Problems with Friction.- 13. Transient Contact Problems.- 14. TBETI.- 15. Mortars.- 16. Preconditioning and Scaling.- Part IV. Other Applications and Parallel Implementation.- 17. Contact with Plasticity.- 18. Contact Shape Optimization.- 19. Massively Parallel Implementation.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781493983124
    • Sprache Englisch
    • Auflage Softcover reprint of the original 1st edition 2016
    • Größe H235mm x B155mm x T20mm
    • Jahr 2018
    • EAN 9781493983124
    • Format Kartonierter Einband
    • ISBN 1493983121
    • Veröffentlichung 12.07.2018
    • Titel Scalable Algorithms for Contact Problems
    • Autor Zden k Dostál , Vít Vondrák , Marie Sadowská , Tomá Kozubek
    • Untertitel Advances in Mechanics and Mathematics 36
    • Gewicht 546g
    • Herausgeber Springer New York
    • Anzahl Seiten 360
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38