Schur Complement Method

CHF 36.75
Auf Lager
SKU
L64U14Q0E2A
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In numerical analysis, the Schur complement method is the basic and the earliest version of non-overlapping domain decomposition method, also called iterative substructuring. A finite element problem is split into non-overlapping subdomains, and the unknowns in the interiors of the subdomains are eliminated. The remaining Schur complement system on the unknowns associated with subdomain interfaces is solved by the conjugate gradient method. The Schur complement is usually not stored, but the multiplication of a vector by the Schur complement is implemented by solving the Dirichlet problem on each subdomain. The multiplication of a vector by the Schur complement is a discrete version of the Poincaré Steklov operator, also called the Dirichlet to Neumann mapping.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131172793
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131172793
    • Format Fachbuch
    • Titel Schur Complement Method
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 68
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38