Schur Decomposition

CHF 48.85
Auf Lager
SKU
UM24GLOKDGU
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is an important matrix decomposition. A constructive proof for the Schur decomposition is as follows: every operator A on a complex finite-dimensional vector space has an eigenvalue , corresponding to some eigenspace V . Let V be its orthogonal complement. It is clear that, with respect to this orthogonal decomposition, A has matrix representation (one can pick here any orthonormal bases spanning V and V respectively) A = begin{bmatrix} lambda , I{lambda} & A{12} 0 & A{22} end{bmatrix}: begin{matrix} V{lambda} oplus V{lambda}^{perp} end{matrix} rightarrow begin{matrix} V{lambda} oplus V_{lambda}^{perp} end{matrix} where I is the identity operator on V . The above matrix would be upper-triangular except for the A22 block. But exactly the same procedure can be applied to the sub-matrix A22, viewed as an operator on V , and its submatrices. Continue this way n times. Thus the space Cn will be exhausted and the procedure has yielded the desired result.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131156434
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131156434
    • Format Fachbuch
    • Titel Schur Decomposition
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 116
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38