Schur's Inequality

CHF 49.05
Auf Lager
SKU
S4TH98IIBE1
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, Schur's inequality, named after Issai Schur, establishes that for all non-negative real numbers x, y, z and a positive number t, x^t (x-y)(x-z) + y^t (y-z)(y-x) + z^t (z-x)(z-y) ge 0 with equality if and only if x = y = z or two of them are equal and the other is zero. When t is an even positive integer, the inequality holds for all real numbers x, y and z. Since the inequality is symmetric in x,y,z we may assume without loss of generality that x geq y geq z. Then the inequality (x-y)[x^t(x-z)-y^t(y-z)]+z^t(x-z)(y-z) geq 0, clearly holds (to be sure), since every term on the left-hand side of the equation is non-negative. This rearranges to Schur's inequality.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131155703
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131155703
    • Format Fachbuch
    • Titel Schur's Inequality
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 116
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38