Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Schur's Theorem
CHF 36.85
Auf Lager
SKU
37GL4P3RLE2
Geliefert zwischen Mo., 02.02.2026 und Di., 03.02.2026
Details
High Quality Content by WIKIPEDIA articles! In discrete mathematics, Schur's theorem is either of two different theorems of the mathematician Issai Schur. In differential geometry, Schur's theorem is a theorem of A. Schur. In functional analysis, Schur's theorem is often called Schur's property, also due to Issai Schur. In differential geometry, Schur's theorem compares the distance between the endpoints of a space curve C to the distance between the endpoints of a corresponding plane curve C of less curvature. Suppose C(s) is a plane curve with curvature (s) which makes a convex curve when closed by the chord connecting its endpoints, and C (s) is a curve of the same length with curvature (s). Let d denote the distance between the endpoints of C and d denote the distance between the endpoints of C . If kappa^ (s) leq kappa(s) then d^ geq d. Schur's theorem is usually stated for C2 curves, but John M. Sullivan has observed that Schur's theorem applies to curves of finite total curvature (the statement is slightly different).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131154928
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131154928
- Format Fachbuch
- Titel Schur's Theorem
- Herausgeber Betascript Publishing
- Anzahl Seiten 68
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung