Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Schur Zassenhaus Theorem
CHF 43.15
Auf Lager
SKU
EGKBCLJKT0O
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
High Quality Content by WIKIPEDIA articles! The Schur Zassenhaus theorem is a theorem in group theory which states that if G is a finite group, and N is a normal subgroup whose order is coprime to the order of the quotient group G / N, then G is a semidirect product of N and G / N. An alternative statement of the theorem is that any normal Hall subgroup of a finite group G has a complement in G. It is clear that if we do not impose the coprime condition, the theorem is not true: consider for example the cyclic group C4 and its normal subgroup C2. Then if C4 were a semidirect product of C2 and C4 / C2 cong C_2 then C4 would have to contain two elements of order 2, but it only contains one. The Schur Zassenhaus theorem at least partially answers the question: "In a composition series, how can we classify groups with a certain set of composition factors?" The other part, which is where the composition factors do not have coprime orders, is tackled in extension theory.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131155284
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131155284
- Format Fachbuch
- Titel Schur Zassenhaus Theorem
- Herausgeber Betascript Publishing
- Anzahl Seiten 76
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung