Schur Zassenhaus Theorem

CHF 43.15
Auf Lager
SKU
EGKBCLJKT0O
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! The Schur Zassenhaus theorem is a theorem in group theory which states that if G is a finite group, and N is a normal subgroup whose order is coprime to the order of the quotient group G / N, then G is a semidirect product of N and G / N. An alternative statement of the theorem is that any normal Hall subgroup of a finite group G has a complement in G. It is clear that if we do not impose the coprime condition, the theorem is not true: consider for example the cyclic group C4 and its normal subgroup C2. Then if C4 were a semidirect product of C2 and C4 / C2 cong C_2 then C4 would have to contain two elements of order 2, but it only contains one. The Schur Zassenhaus theorem at least partially answers the question: "In a composition series, how can we classify groups with a certain set of composition factors?" The other part, which is where the composition factors do not have coprime orders, is tackled in extension theory.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131155284
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131155284
    • Format Fachbuch
    • Titel Schur Zassenhaus Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 76
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38