Schwarzschild Metric

CHF 49.15
Auf Lager
SKU
77FELU5KCPI
Stock 1 Verfügbar
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026

Details

High Quality Content by WIKIPEDIA articles! In Einstein's theory of general relativity, the Schwarzschild solution (or the Schwarzschild vacuum) describes the gravitational field outside a spherical, non-rotating mass such as a (non-rotating) star, planet, or black hole. It is also a good approximation to the gravitational field of a slowly rotating body like the Earth or Sun. The cosmological constant is assumed to equal zero. In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres. The defining characteristic of Schwarzschild chart is that the radial coordinate possesses a natural geometric interpretation in terms of the surface area and Gaussian curvature of each sphere. However, radial distances and angles are not accurately represented.

Klappentext

High Quality Content by WIKIPEDIA articles! In Einstein's theory of general relativity, the Schwarzschild solution (or the Schwarzschild vacuum) describes the gravitational field outside a spherical, non-rotating mass such as a (non-rotating) star, planet, or black hole. It is also a good approximation to the gravitational field of a slowly rotating body like the Earth or Sun. The cosmological constant is assumed to equal zero. In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres. The defining characteristic of Schwarzschild chart is that the radial coordinate possesses a natural geometric interpretation in terms of the surface area and Gaussian curvature of each sphere. However, radial distances and angles are not accurately represented.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130348229
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T6mm
    • Jahr 2010
    • EAN 9786130348229
    • Format Kartonierter Einband
    • ISBN 978-613-0-34822-9
    • Titel Schwarzschild Metric
    • Untertitel Schwarzschild Metric, Schwarzschild Coordinates, Pseudo-Riemannian Manifold, Spherically Symmetric Spacetime, Atlas Topology, Spherical Coordinate System, Static Spacetime
    • Gewicht 171g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 104
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38