Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Selection Important Symptoms for Medical Datasets
Details
Selection of optimal features is an important area of research in medical data mining systems. In this research we introduce an efficient procedure -feature subset selection, feature ranking and classification, called as Principle Component Analysis based on JK method for the improvement of detection accuracy and optimal feature subset selection. The proposed method adjusts a parameter named "variance coverage" and builds the model with the value at which maximum classification accuracy is obtained. This facilitates the selection of a compact set of superior features, remarkably at a very low cost. The extensive experimental comparison of the proposed method and other methods using three different classifiers (Naïve Bayes (NB), multi-layer perceptron (MLP) and J48 decision tree) and 6 different medical data sets can confirm that the proposed (PCA-JK) strategy yields promising results on feature selection and classification accuracy for medical data mining field of research.
Autorentext
Noor Thamer Mahmood is a Lecturer at Mustansiriyah University.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783330081802
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 68
- Genre Software
- Sprache Englisch
- Gewicht 119g
- Autor Noor T. Mahmood , Maha Abdul-Rahman , Rusul Abdallah
- Größe H220mm x B150mm x T5mm
- Jahr 2018
- EAN 9783330081802
- Format Kartonierter Einband
- ISBN 3330081805
- Veröffentlichung 03.01.2018
- Titel Selection Important Symptoms for Medical Datasets