Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Self-Adaptive Heuristics for Evolutionary Computation
Details
This book introduces various types of self-adaptive parameters for evolutionary computation. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves.
This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.
Presents recent research on Self-Adaptive Heuristics for Evolutionary Computation
Inhalt
I: Foundations of Evolutionary Computation.- Evolutionary Algorithms.- Self-Adaptation.- II: Self-Adaptive Operators.- Biased Mutation for Evolution Strategies.- Self-Adaptive Inversion Mutation.- Self-Adaptive Crossover.- III: Constraint Handling.- Constraint Handling Heuristics for Evolution Strategies.- IV: Summary.- Summary and Conclusion.- V: Appendix.- Continuous Benchmark Functions.- Discrete Benchmark Functions.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642088780
- Auflage Softcover reprint of hardcover 1st edition 2008
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T11mm
- Jahr 2010
- EAN 9783642088780
- Format Kartonierter Einband
- ISBN 3642088783
- Veröffentlichung 28.10.2010
- Titel Self-Adaptive Heuristics for Evolutionary Computation
- Autor Oliver Kramer
- Untertitel Studies in Computational Intelligence 147
- Gewicht 306g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 196
- Lesemotiv Verstehen