Self-Adaptive Heuristics for Evolutionary Computation

CHF 163.15
Auf Lager
SKU
M8ALTPNIDLE
Stock 1 Verfügbar
Geliefert zwischen Fr., 07.11.2025 und Mo., 10.11.2025

Details

This book introduces various types of self-adaptive parameters for evolutionary computation. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.

Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves.

This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.


Presents recent research on Self-Adaptive Heuristics for Evolutionary Computation

Inhalt
I: Foundations of Evolutionary Computation.- Evolutionary Algorithms.- Self-Adaptation.- II: Self-Adaptive Operators.- Biased Mutation for Evolution Strategies.- Self-Adaptive Inversion Mutation.- Self-Adaptive Crossover.- III: Constraint Handling.- Constraint Handling Heuristics for Evolution Strategies.- IV: Summary.- Summary and Conclusion.- V: Appendix.- Continuous Benchmark Functions.- Discrete Benchmark Functions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642088780
    • Auflage Softcover reprint of hardcover 1st edition 2008
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H235mm x B155mm x T11mm
    • Jahr 2010
    • EAN 9783642088780
    • Format Kartonierter Einband
    • ISBN 3642088783
    • Veröffentlichung 28.10.2010
    • Titel Self-Adaptive Heuristics for Evolutionary Computation
    • Autor Oliver Kramer
    • Untertitel Studies in Computational Intelligence 147
    • Gewicht 306g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 196
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470