Self-adjoint Operator

CHF 61.40
Auf Lager
SKU
NJ1TQSM290J
Stock 1 Verfügbar
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, on a finite-dimensional inner product space, a self-adjoint operator is one that is its own adjoint, or, equivalently, one whose matrix is Hermitian, where a Hermitian matrix is one which is equal to its own conjugate transpose. By the finite-dimensional spectral theorem such operators have an orthonormal basis in which the operator can be represented as a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension. Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the fact that in the Dirac-von Neumann formulation of quantum mechanics, physical observables such as position, momentum, angular momentum and spin are represented by self-adjoint operators on a Hilbert space.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130320096
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T10mm
    • Jahr 2010
    • EAN 9786130320096
    • Format Kartonierter Einband
    • ISBN 978-613-0-32009-6
    • Titel Self-adjoint Operator
    • Untertitel Self-adjoint Operator, Mathematics, Inner Product Space, Hermitian Adjoint, Matrix Mathematics, Hermitian Matrix, Conjugate Transpose, Spectral Theorem
    • Gewicht 255g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 160
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38