Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Self-ordered fronts under oscillating zero-mean forces
Details
Spatio-temporal control of the self-ordered structures by use of the time-dependent oscillatory fields of zero-time average, either deterministic (temporally regular) or noisy (temporally irregular) ones, has today become a fundamental field of multidisciplinary research in a wide variety of the highly nonlinear systems of the different physical origin. The self-ordered bistable fronts in the essentially dissipative systems of the reaction-diffusion type, that are formulated by parabolic partial differential equations, are investigated in this study. The objective of the research is to investigate new possibilities of controlling the directed net motion of the self-ordered bistable fronts by the deterministic and stochastic zero-mean ac forces using mathematical modeling and analytic tools. In order to achieve the objective mathematical and numerical models were applied, computer software was created and new possibilities of controlling the directed net motion of bistable fronts by use of the zero-average periodic, quasi-periodic and bounded noise fields were investigated.
Autorentext
Valdas Jasaitis completed his PhD at Vilnius University in 2012 on mathematical modeling of self-ordered fronts under oscillating zero-mean forces. His background is in computer science and this research has been conducted in cooperation with the Lithuanian Semiconductor Physics Institute.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783848489077
- Auflage Aufl.
- Sprache Englisch
- Genre Physik & Astronomie
- Größe H220mm x B220mm
- Jahr 2012
- EAN 9783848489077
- Format Kartonierter Einband (Kt)
- ISBN 978-3-8484-8907-7
- Titel Self-ordered fronts under oscillating zero-mean forces
- Autor Valdas Jasaitis
- Untertitel Mathematical modeling
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 84