Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Semantisches Video-Segmentierungs- und Abfragesystem
Details
In den vergangenen Jahren wurden Methoden zum Auffinden von Videos auf der Grundlage ihrer visuellen Merkmale entwickelt. Angesichts der Tatsache, dass eine kostengünstige Speicherung, ein weltweiter Breitband-Internetzugang, preiswerte Digitalkameras und flinke Videobearbeitungswerkzeuge zu einer Flut ungeordneter Videoinhalte führen würden, entwickeln Forscher seit einigen Jahren Technologien zur Videosuche. Video Retrieval ist nach wie vor eines der spannendsten und am schnellsten wachsenden Forschungsgebiete im Bereich der Multimediatechnologie. Bei der Entwicklung unseres Systems haben wir die bestehenden Zwänge und Beschränkungen berücksichtigt und ein Anwendungssystem entwickelt, das nicht nur die Anforderungen des Benutzers erfüllt, sondern auch eine der neuartigen Methoden auf dem Gebiet der Computer Vision darstellt. Wir haben fortschrittliche Algorithmen des maschinellen Lernens wie Stream, Fstream und R-CNN für das Training des extrahierten Datensatzes eingesetzt. Nach dem Training des Modells mit R-CNN haben wir Autoencoder für den Aufbau des Modells verwendet. Die für das Video-Retrieval entwickelte Architektur ist genau und kann für weitere Ansätze verwendet werden. Dieses Anwendungssystem kann in vielen Bereichen eingesetzt werden, z. B. in der medizinischen Bildverarbeitung, im Verkehrsüberwachungssystem usw.
Autorentext
S. Brahanyaa, schloss ihr B.Tech(CSE) an der VIT University ab und absolviert ihren Master in Informatik an der Arizona State University. Ihre Forschungspraktika absolvierte sie in den Bereichen Parallel Distributed Computing und Computer Vision. Ihre Interessengebiete sind Data Mining, maschinelles Lernen und Cybersicherheit. Sie kann auch gut malen und singen.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786204824581
- Sprache Deutsch
- Genre Anwendungs-Software
- Größe H220mm x B150mm x T4mm
- Jahr 2022
- EAN 9786204824581
- Format Kartonierter Einband
- ISBN 978-620-4-82458-1
- Veröffentlichung 31.05.2022
- Titel Semantisches Video-Segmentierungs- und Abfragesystem
- Autor Brahanya Somasundaram , Shridevi Subramanian
- Gewicht 96g
- Herausgeber Verlag Unser Wissen
- Anzahl Seiten 52