Semi- Continuity

CHF 42.80
Auf Lager
SKU
SG78NNE7QB2
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematical analysis, semi-continuity (or semicontinuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function f is upper (lower) semi-continuous at a point x0 if, roughly speaking, the function values for arguments near x0 are either close to f(x0) or less than (greater than) f(x0).Consider the function f, piecewise defined by f(x) = 1 for x 0 and f(x) = 1 for x 0. This function is upper semi-continuous at x0 = 0, but not lower semi-continuous.A function is continuous at x0 if and only if it is upper and lower semi-continuous there. Therefore, semi-continuity can be used to prove continuity. If f and g are two real-valued functions which are both upper semi-continuous at x0, then so is f + g. If both functions are non-negative, then the product function fg will also be upper semi-continuous at x0. Multiplying a positive upper semi-continuous function with a negative number turns it into a lower semi-continuous function.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131120749
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131120749
    • Format Fachbuch
    • Titel Semi- Continuity
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 96
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38