Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Semi-supervised Tooth Segmentation
Details
This book constitutes the proceedings of the First MICCAI 2023 Challenge on Semi-supervised
Tooth Segmentation, SemiToothSeg 2023, held in Conjunction with MICCAI 2023, in Vancouver, BC, Canada, on October 8, 2023.
The 16 full papers presented in this book were carefully reviewed and selected from 64 submissions. The papers were written by participants in the STS challenge to describe their solutions for automatic teeth segmentation using the offcial training dataset released for this purpose.
In general, this challenge aims to promote the development of the teeth segmentation in panoramic X-ray images and dental CBCT scans.
Inhalt
Convolutional Neural Network-based Multi-scale Semantic Segmentation for Two-dimensional Panoramic X-rays of Teeth.- TB-FPN: Enhancing Tooth Segmentation with Cascade Boundary-aware FPN.- Perform Special Post-processing after Tooth Segmentation.- A Multi-Stage Framework for 3D Individual Tooth Segmentation in Dental CBCT.- Preprocessing of Prior Knowledge before Semi-Supervised Tooth Segmentation.- A Semi-Supervised Tooth Segmentation Method based on Entropy-Guided Mean Teacher and Weakly Mutual Consistency Network.- MsNet: Multi-Stage Learning from Seldom Labeled Data for 3D Tooth Segmentation in Dental Cone Beam Computed Tomography.- Diffusion-Based Conv-Former Dual-Encode U-Net: DDPM for Level Set Evolution Mapping - MICCAI STS 2023 Challenge.- Semi-Supervised 3D Tooth Segmentation Using nn-UNet with Axial Attention and Positional Correction.- Boundary Feature Fusion Network for Tooth Image Segmentation.- Self-training Based Semi-Supervised Learning and U-Net with Denoiser for Teeth Segmentation in X-ray Image.- UX-CNet: Effective Edge Information Acquisition for Teeth Image Segmentation.- 2D Teeth Segmentation Base on Half-image Approach and VCMix-Net+.- Automated Dental CBCT Segmentation using Pseudo Labeling Method.- Prior-aware Cross Pseudo Supervision for Semi-supervised Tooth Segmentation.- High-Precision Semi-supervised 3D Dental Segmentation Based on nnUNet.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031723957
- Anzahl Seiten 204
- Lesemotiv Verstehen
- Genre Software
- Editor Yaqi Wang, Xiaodiao Chen, Dahong Qian, Fan Ye, Shuai Wang, Hongyuan Zhang
- Sprache Englisch
- Herausgeber Springer
- Gewicht 318g
- Untertitel First MICCAI Challenge, SemiToothSeg 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings
- Größe H235mm x B155mm x T12mm
- Jahr 2024
- EAN 9783031723957
- Format Kartonierter Einband
- ISBN 3031723953
- Veröffentlichung 19.10.2024
- Titel Semi-supervised Tooth Segmentation