Semiparametric Theory and Missing Data

CHF 303.15
Auf Lager
SKU
23PN466328F
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

This book summarizes current knowledge of the theory of estimation for semiparametric models with missing data, applying modern methods to missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.


Missing data arise in almost all scientific disciplines. In many cases, missing data in an analysis is treated in a casual and ad-hoc manner, leading to invalid inferences and erroneous conclusions. The past 20 years have seen a serious attempt to understand the underlying issues and difficulties arising from missing data and their impact on subsequent analysis. This book summarizes current knowledge regarding the theory of estimation for semiparametric models with missing data, in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.


Unifies the two approaches to the topic of missing data

Inhalt
to Semiparametric Models.- Hilbert Space for Random Vectors.- The Geometry of Influence Functions.- Semiparametric Models.- Other Examples of Semiparametric Models.- Models and Methods for Missing Data.- Missing and Coarsening at Random for Semiparametric Models.- The Nuisance Tangent Space and Its Orthogonal Complement.- Augmented Inverse Probability Weighted Complete-Case Estimators.- Improving Efficiency and Double Robustness with Coarsened Data.- Locally Efficient Estimators for Coarsened-Data Semiparametric Models.- Approximate Methods for Gaining Efficiency.- Double-Robust Estimator of the Average Causal Treatment Effect.- Multiple Imputation: A Frequentist Perspective.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781441921857
    • Sprache Englisch
    • Auflage Softcover reprint of hardcover
    • Größe H235mm x B155mm
    • Jahr 2010
    • EAN 9781441921857
    • Format Kartonierter Einband
    • ISBN 978-1-4419-2185-7
    • Veröffentlichung 25.11.2010
    • Titel Semiparametric Theory and Missing Data
    • Autor Anastasios Tsiatis
    • Untertitel Springer Series in Statistics
    • Gewicht 617g
    • Herausgeber Springer New York
    • Anzahl Seiten 388
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38