Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Semiparametric Theory and Missing Data
Details
This book summarizes current knowledge of the theory of estimation for semiparametric models with missing data, applying modern methods to missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.
Missing data arise in almost all scientific disciplines. In many cases, missing data in an analysis is treated in a casual and ad-hoc manner, leading to invalid inferences and erroneous conclusions. The past 20 years have seen a serious attempt to understand the underlying issues and difficulties arising from missing data and their impact on subsequent analysis. This book summarizes current knowledge regarding the theory of estimation for semiparametric models with missing data, in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.
Unifies the two approaches to the topic of missing data
Inhalt
to Semiparametric Models.- Hilbert Space for Random Vectors.- The Geometry of Influence Functions.- Semiparametric Models.- Other Examples of Semiparametric Models.- Models and Methods for Missing Data.- Missing and Coarsening at Random for Semiparametric Models.- The Nuisance Tangent Space and Its Orthogonal Complement.- Augmented Inverse Probability Weighted Complete-Case Estimators.- Improving Efficiency and Double Robustness with Coarsened Data.- Locally Efficient Estimators for Coarsened-Data Semiparametric Models.- Approximate Methods for Gaining Efficiency.- Double-Robust Estimator of the Average Causal Treatment Effect.- Multiple Imputation: A Frequentist Perspective.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441921857
- Sprache Englisch
- Auflage Softcover reprint of hardcover
- Größe H235mm x B155mm
- Jahr 2010
- EAN 9781441921857
- Format Kartonierter Einband
- ISBN 978-1-4419-2185-7
- Veröffentlichung 25.11.2010
- Titel Semiparametric Theory and Missing Data
- Autor Anastasios Tsiatis
- Untertitel Springer Series in Statistics
- Gewicht 617g
- Herausgeber Springer New York
- Anzahl Seiten 388
- Lesemotiv Verstehen
- Genre Mathematik