Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Sensitivity Analysis of VaR and CVaR
Details
Value at Risk (VaR) and conditional value at Risk (CVaR) are frequently used risk measures. Finding optimal portfolio using VaR or CVaR as a risk measure is computationally intensive especially when number of instruments and scenarios size is huge. This problem was analyzed and a computational efficient method, beating the industry's best methods, was proposed in this work. Parallel computing techniques were further applied to attain even higher computational efficiencies. Also models were built to find sensitivities in VaR and CVaR for different set of parameters like risk free interest rates on stocks, Market interest rates on bonds, volatilities in stocks and bonds and portfolio allocation weights. Illustrated ways to overcome limitations in finite difference methods to find sensitivities in VaR and CVaR. Finally an application of our work is presented using a portfolio of different types of options, bonds and stocks.
Autorentext
Narendra completed his Master's in Industrial Engineering and Operations Research at Indian Institute of Technology - Bombay in 2009. Narendra is a certified financial risk manager (FRM) and is currently working in one of the leading financial services firm.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659180644
- Sprache Englisch
- Auflage Aufl.
- Größe H220mm x B150mm x T8mm
- Jahr 2012
- EAN 9783659180644
- Format Kartonierter Einband
- ISBN 3659180645
- Veröffentlichung 15.07.2012
- Titel Sensitivity Analysis of VaR and CVaR
- Autor Narendra Varma
- Untertitel Sensitivity Analysis and Computational aspects of Value at Risk (VaR) and Conditional Value at Risk (CVaR)
- Gewicht 191g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 116
- Genre Mathematik