Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Sentic Computing
Details
This volume presents a knowledge-based approach to concept-level sentiment analysis at the crossroads between affective computing, information extraction, and common-sense computing, which exploits both computer and social sciences to better interpret and process information on the Web.
Concept-level sentiment analysis goes beyond a mere word-level analysis of text in order to enable a more efficient passage from (unstructured) textual information to (structured) machine-processable data, in potentially any domain.
Readers will discover the following key novelties, that make this approach so unique and avant-garde, being reviewed and discussed:
• Sentic Computing's multi-disciplinary approach to sentiment analysis-evidenced by the concomitant use of AI, linguistics and psychology for knowledge representation and inference
• Sentic Computing's shift from syntax to semantics-enabled by the adoption of the bag-of-concepts model instead of simply counting word co-occurrence frequencies in text
• Sentic Computing's shift from statistics to linguistics-implemented by allowing sentiments to flow from concept to concept based on the dependency relation between clauses
This volume is the first in the Series Socio-Affective Computing edited by Dr Amir Hussain and Dr Erik Cambria and will be of interest to researchers in the fields of socially intelligent, affective and multimodal human-machine interaction andsystems.
First approach to sentiment analysis that merges AI, linguistics, and psychology Comprehensive explanation of popular sentic computing techniques Full set of linguistic patterns for sentiment analysis Downloadable knowledge base
Inhalt
Introduction.- SenticNet.- Sentic Patterns.- Sentic Applications.- Conclusion.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319236537
- Genre Information Technology
- Auflage 1st edition 2015
- Lesemotiv Verstehen
- Anzahl Seiten 176
- Größe H13mm x B161mm x T242mm
- Jahr 2015
- EAN 9783319236537
- Format Fester Einband
- ISBN 978-3-319-23653-7
- Titel Sentic Computing
- Autor Erik Cambria , Amir Hussain
- Untertitel A Common-Sense-Based Framework for Concept-Level Sentiment Analysis
- Gewicht 451g
- Herausgeber Springer International Publishing
- Sprache Englisch